

United States Patent [19]

Müllen et al.

[11]

5,986,099

Date of Patent: [45]

Patent Number:

Nov. 16, 1999

[54] SUBSTITUTED QUATERRYLENE TETRACARBOXYLIC ACID DIIMIDES

[75] Inventors: Klaus Müllen; Heribert Quante, both of Köln; Arno Böhm, Mannheim, all of

Germany

[73] Assignees: BASF Aktiengesellschaft,

Ludwigshafen;

Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. Berlin, Munich, both of Germany

08/860,928 [21] Appl. No.: [22] PCT Filed: Jan. 12, 1996

[86] PCT No.: PCT/EP96/00118

§ 371 Date: Jul. 21, 1997 § 102(e) Date: Jul. 21, 1997 [87] PCT Pub. No.: WO96/22332

PCT Pub. Date: Jul. 25, 1996

[30] Foreign Application Priority Data

Jan. 20, 1995 [DE] Germany 195 01 576 **Int. Cl.**⁶ **C09B 5/62**; C07D 221/18 [52] **U.S. Cl.** **546/26**; 546/40; 8/636; 8/648 **Field of Search** 546/26; 8/636, 8/648

[56] References Cited

U.S. PATENT DOCUMENTS

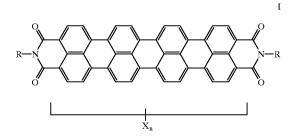
1,715,430	6/1929	Schmidt et al.	 502/407
4,846,892	7/1989	Henning et al.	 106/478
5,405,962	4/1995	Muellen et al.	 546/27

FOREIGN PATENT DOCUMENTS

4236885 5/1994 Germany.

OTHER PUBLICATIONS

Nagao, Y. et al, Dyes and Pigments, 1991, 16, pp. 19-25. Quante, H. et al, Angew. Chem. Int. Ed. Engl., 1995, 34(12),


Seybold, G. et al, Dyes and Pigments, 1989, 11(4), pp. 303-317.

Primary Examiner—Alan L. Rotman Assistant Examiner-Garth M. Dahlen

Attorney, Agent, or Firm—Oblon, Spivak, McClelland, Maier & Neustadt, P.C.

ABSTRACT

Quaterrylenetetracarboxylic diimides I

where

R is hydrogen;

C₁-C₃₀-alkyl whose carbon chain may be interrupted by one or more of -O, -S, $-NR^1$, -COand/or —SO₂— and which may be monosubstituted or polysubstituted by cyano, C₁-C₆-alkoxy or a 5-, 6- or 7-membered heterocyclic radical which is attached via a nitrogen atom and which may contain further heteroatoms and may be aromatic, where

 R^1 is hydrogen or C_1 – C_6 -alkyl;

C₅-C₈-cycloalkyl whose carbon skeleton may be interrupted by one or more of —O—, —S— and/or —NR¹—;

aryl or hetaryl, which may each be monosubstituted or poly-substituted by C₁-C₁₈-alkyl, C₁-C₆-alkoxy, cyano, —CONHR², —NHCOR² and/or aryl- or hetaryl-azo, which may each be substituted by C₁-C₁₀alkyl, C₁-C₆-alkoxy or cyano, where

 R^2 is hydrogen; C_1 – C_{18} -alkyl; aryl or hetaryl, which may each be substituted by C₁-C₆-alkyl, C₁-C₆-alkoxy, halogen or cyano;

X is halogen; C₁-C₁₈-alkyl; aryloxy, arylthio, hetaryloxy or hetarylthio, which may each be substituted by C₁-C₄alkyl or C_1 – C_4 -alkoxy;

n is from 2 to 12,

their preparation and use as pigments or fluorescent dyes.

9 Claims, No Drawings